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An exact solution is presented of the problem of the velocity and tempe- 
rature distributions near a cylinder placed lengthwise in the stream of 
a viscous incompressible fluid, the velocity of which is given in the 
form II= Uu + fi+r2, in the presence of distributed boundary-layer suction. 

I. The dynamic bomdary layer on the cylinder. We shall investigate 
the problem of the distribution of velocities and temperatures near a 
heated cylinder of radius o placed lengthwise in an inhomogeneous stream 
of a viscous incompressible fluid, the velocity of which is given in the 
form 

u = u, + 6h# (r > a) (I.11 

where (I, and o,, are constants, in the presence of steady boundary-layer 
suction, the intensity of which is assumed constant. 

If we assume that the flow is steady and axially symmetrical and that 
the velocity components and temperature distributions are independent of 
the z coordinate directed along the cylinder axis in the direction of 
the flow, then the Navier-Stokes equations have the form 

d(f-r,) o 

-= 

dr (1.2) 

where x is the coefficient of heat conductivity, g is the gravitational 
constant, v is the kinematic viscosity, p,is the density, p is the 
absolute viscosity, cp is the specific heat of the medium. p is the 
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pressure, and u and v are the velocity components along the Z- and r-axes, 
respectively. It is easy to see that the solution of the first three 
equations of this system that satisfy the boundary conditions 

(1.4) 

vz = 0, VP = r0 < 0 for r=a, vz + u, + a@, vr d 0 for r--too 

has the form 

V 
.L=l-Rk+p(Ra-Rk), 
ua 

E_$p(Z--k)&~. g=!g (1.5) 
0 

where for abbreviation the following notation is introduced: 

RET, Z,==L, ttt=I;), 
VII 

Re = *aa -9 k = tn Rc 
a 

(1.6) 
a Y 

and p. is an arbitrary constant. 

The shear stress due to friction at the wall r,, is determined by the 
following relation: 

dvz 
T”=pdr rea I = p !$! [,3 (2 - k) -k] (1.7) 

Hence, it follows immediately that the flow remains attached to the 
circular cylinder only if the condition p(2 - k) - k > 0 is fulfilled, 
i.e. for a particular relationship between the exhaust velocity and the 
order of inhomogeneity of the oncoming stream. 

Usually, boundary-layer suction is used to diminish the friction re- 
sistance by moving the transition point from laainar to turbulent bound- 
ary layer downstream. Consequently, in practice, large Reynolds numbers 
are of main interest, i.e. large k values (absolute magnitude). Then it 
follows from (1.5) and (1.7) that even a comparatively weak inhomogeneity 
of the oncoming stream will have a noticeable influence on the distribu- 
tion of velocities and the shear stress at the wall. This is illustrated 
in the figure, in the upper part of which are shown the profiles of the 
velocities vz/VO in the boundary layer at the cylinder. calculated from 
Formula (1.5) for k = 100, for the three values of vorticity of %he on- 
coming stream /3 = -0.1. 0 and 0.1. 

2. Them1 boondary layer on the cylinder. If we substitute (1.5) and 
(1.3) and take into account (1.6). then we obtain-the following differ- 
ential equation for the determination of temperature distribution near a 
heated cylinder: 

‘$ + 4$?R2 - 43 (1 + 3) kRk + (I+ p)a krR8k-2 
1 

(2.1) 
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the solution of which depends on definite heat boundary conditions; here 

3 
8= u,212gcp’ 

wp 
*=- 

A 
(Prandtl Number) 

The thermometer problem. If we assume that the conduction of heat from 
the wall to the fluid is zero, i.e. dS/dR = 0 for R = 1, then the solu- 
tion of Equation (2.1) which satisfies this condition may be written in 
the following form: 

2a$= 
9--tlo=_ 

[ 
kRafr 

4--ko ak 
-R*]-;;;a [.“, Ii”” -R-a] + 

+. 1 (2.3) 

where a,, is some characteristic temperature. 

From the last equation it is easy to see that at a sufficient distance 
from the cylinder there exists a cross-stream temperature drop of the 
following magnitude: 

_ .+?f_ R_a 
2 + ko 

i.e. an inhomogeneity of velocity field in an oncoming stream causes the 
inhomogeneity of’the temperature field. We shall now determine the proper 
temperature of the wall T,. Assuming R = 1 in (2.3) and taking into 
account (1.6) and (2.21, we have 

T,--To = 1 (2.3 

Consequently, the difference between Proper temperature Tc and T,, is 
a function of the temperature of adiabatic compression, the exhaust velo- 
city and of the inhomogeneity of the oncoming stream, but it does not 
depend upon the Prandtl number. 

Note that for large Reynolds numbers \ iI >> 1, therefore expression 
(2.5) may be approximately written in the form 

T,--TT,= g- (l-i- FY 
P 

(2.6) 

i.e. a relatively small inhomogeneit3 of the oncoming stream may have a 
substantial influence on the proper temperature of the wall. 

The cooling problem. The boundary condition at the wall in this case 
is given by 

T=T1 or &=&where R=i (2.71 
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and the solution of Equation (2.1). which satisfies this condition, has 
the form 

8 - 9, = (+-- ao) R”‘; - 4s (R4 - R”k) - $$ (R-2 - .“‘o + 

(Rkf2 _ROk,_-(1 -b(3)’ (@k_-_Uk) ! ska$(l+$) 

’ (k + 2)(k + 2 - ka) 2-U (2.8) 

In conclusion, we shall investigate the question of the direction of 
thermal conductivity. i.e. whether the heat is transferred from the wall 
to the moving fluid or vice versa. For this we shall determine the sign 
of the temperature gradient near the wall. After differentiating Equation 
(2.8) with respect to R and substituting R = 1 into the equation thus 
obtained, we have 

If d&/dR < 0 for R = 1. then the heat transfer is from the cylinder 
to the fluid, and. conversely, if &/dR > 0 for R = 1. then the heat 
transfer is from the fluid to the cylinder. Consequently, the following 
inequality serves as a criterion of the heat flow from the heated cylinder 
to the moving fluid (or vice versa): 

88 (1 + B) 
k+2 

f (1 + ,,qg (2.10, 

or. using (2.5), as in the case of a disk immersed in a POtential gtrt?aID, 

we have 

T1--T,,sT,--To (heated wall 2 fluid) (2.11) 
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From the expressions (2.11) and (2.6) it follows that the inhomogeneity 
of an oncoming stream may substantially increase or, conversely, decrease 
the cooling action of the fluid flowing past a cylinder. In essence, 
everything will depend on the sign of the inhomogeneity of the oncoming 
stream /!?. For fi < 0 the temperature gradient and the thickness of the 
thermal boundary layer will be smaller than in the case of the cylinder 
immersed in a potential stream, and, conversely, for fi > 0 they will be 
greater. This may be illustrated by the distribution of the temperatures 
9-C+, in the boundary layer, shown in the lower part of the figure, cal- 
culated from Formula (2.8) for II = 10”‘. If = lo- ‘, 5, ==a0 and u’= 0.72 
for the three values of vorticity of the oncoming stream j3 = -0.1, 0 and 
0.1. 

Tronrrlatcd by J.R.W. 


